Jani Virtanen (University of Reading) : Hankel operators on the Fock space and the Berger-Coburn phenomenon
Séminaire « Analyse fonctionnelle »Orateur: Jani Virtanen
Affiliation : University of Reading
Date : 18 Novembre 2022
Heure : 14h
Lieu : Salle Kampé de Fériet, Bâtiment M2
Titre : Hankel operators on the Fock space and the Berger-Coburn phenomenon
Résumé : In this talk we consider Hankel operators $H_f$ on the Fock space of Gaussian square-integrable entire functions and discuss their boundedness, compactness and Schatten class properties. In particular, I focus on the following property. Given an operator ideal $M$ and a bounded function $f$, we say that the operator ideal has Berger-Coburn phenomenon (BCP) if $H_f$ is in $M$ whenever $H_{\bar f}$ is in M. One of the key differences between the Fock space, the Bergman space, and the Hardy space is that the operator ideal of compact operators on the latter two spaces has no BCP. I explain this difference and answer the question of whether the Schatten classes have BCP.
Partager sur X Partager sur Facebook