Helge Dietert (Université Paris Cité et Sorbonne Université): Global strong solutions for the triangular Shigesada-Kawasaki-Teramoto cross-diffusion system in three dimensions and parabolic regularisation for increasing functions
Séminaire « Analyse numérique et équations aux dérivées partielles »
Salle de réunion M2
We prove the existence of global strong solutions to the triangular Shigesada-Kawasaki-Teramoto (SKT) cross-diffusion system with Lokta-Volterra reaction terms in three dimensions. A key part is the independent careful study of the parabolic equation \(a\partial_t w -\Delta w = f\) with a rough coefficient \(a\), homogeneous Neumann boundary conditions, and the special assumption \(\partial_tw \ge 0\). By the same method, we obtain estimates for solutions to reaction-diffusion systems modelling reversible chemistry.