Cécile Gachet (Ruhr-Universität Bochum) : Une surface de rang de Picard 11 avec une infinité de formes réelles

Séminaire « Géométrie algébrique »
Salle Kampé de Feriet (Bâtiment M2, 1er étage)

Cet exposé concerne un travail en collaboration avec Tien-Cuong Dinh, Hsueh-Yung Lin, Keiji Oguiso, Long Wang et Xun Yu. Soit X une variété algébrique complexe. Les formes réelles de X sont les variétés réelles W dont la “complexification”, en tant que variété complexe, est isomorphe à X. Bien entendu, certaines variétés complexes n’ont pas de forme réelle. Un fait plus surprenant, mis en évidence par Lesieutre en 2016, est l’existence d’une variété complexe admettant une infinité de formes réelles. Dans cet exposé, on présente une surface de rang de Picard relativement petit possédant une infinité de formes réelles. L’exemple en question est obtenu en adaptant une construction de Dinh-Oguiso-Yu à base de surfaces K3 via une technique due à Mukai. En fin de compte, on fabrique une surface d’Enriques dont l’éclatement en un point très général d'une courbe bien choisie possède une infinité de formes réelles. Si le temps le permet, on expliquera aussi pourquoi le groupe d’automorphismes de cet éclatement n’est pas de type fini.


Partager sur X Partager sur Facebook