Journée du séminaire ACED

Séminaire « Analyse complexe et équations différentielles »
Salle de séminaires - Bât M3, 3e étage

Une journée du séminaire  ACED  sera organisée le lundi 30 juin pour fêter la fin de l'année universitaire.

Lieu : Les exposés auront lieu en salle de séminaires  (bâtiment M3, 3e étage) ; le café d'accueil en salle  de convivialité (bâtiment M3, 3e étage).

Organisateurs : Changgui Zhang, Viet-Anh Nguyen

Programme :

12h30 - 13h : Café d'accueil en salle de convivialité

13h - 14h : Alberto Lastra (Universidad de Alcalá): On sequences preserving $q-$Gevrey asymptotic expansions.

14h - 14h20 : Pause de thé en salle de convivialité

14h20 - 15h20 :  Marco Vergamini (Scuola Normale Superiore of Pisa):  Mixing and central limit theorems for Hénon maps.

15h20 - 15:40:  Pause de thé en salle de convivialité

15:40-16h40:   Duc-Viet Vu (University of Cologne) (en mode  distanciel): Intersection of entire curves with very generic hypersurface.

(Pour l'exposé de Duc-Viet Vu, vous pouvez aussi aller à la réunion Zoom
https://univ-lille-fr.zoom.us/j/99167746790?pwd=zzAsXqdfTMKmuZwV9lYbdyaCkYzFM6.1

ID de réunion: 991 6774 6790
Code secret: 123854
)

Résumés :

Alberto Lastra: On sequences preserving $q-$Gevrey asymptotic expansions.

Abstract:  Preservation of q-asymptotic expansions (resp. q-Gevrey properties) is analized
on sequences of positive real numbers. Such asymptotic expansions naturally appear
when relating the analytic and the formal solutions of q−difference equations.
A characterization of such sequences is determined, providing a handy tool in
practice. The sequence of q−factorials is proved to preserve q−Gevrey asymp-
totic expansions. Recent results distinguish such sequences from those preserving
asymptotic expansions.
Joint work with S. Michalik.

Marco Vergamini: Mixing and central limit theorems for Hénon maps.

Abstract: Let f be a complex Hénon map and μ its unique measure of maximal entropy. Recently, Bianchi-Dinh proved that μ is exponentially mixing of all orders for all Hölder observables, and that all such observables satisfy the central limit theorem with respect to μ. De Thélin-Vigny generalized these results for a certain class of bounded plurisubharmonic observables. We prove that these properties hold for all, not necessarily bounded, plurisubharmonic observables. This is a joint work with Hao Wu.

Duc-Viet Vu (en mode  distanciel): Intersection of entire curves with very generic hypersurface.

Abstract:  We show that transcendental entire curves "fully" intersect  with very generic ample divisors. These curves must also avoid general enough analytic subsets of codimension 2. The proof uses the theory of intersection of currents. This is a joint-work with Dinh Tuan Huynh.