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Descriptif : 

Au début des années 1910, Ramanujuan a envoyé dans des courriers à Hardy, depuis l’Inde, des listes de 
fonctions spéciales qu’il appelait mock-theta. Ces fonctions ont ensuite été examinées par de nombreux 
mathématiciens, venant de l’Analyse ou la théorie des nombres, tels que G. N. Watson, G. E. Andrews, 
etc. Tout récemment, elles ont connu un regain d’intérêt en raison de leurs féconds liens avec la théorie 
conforme des champs et de la K-théorie algébrique. Un exposé notable sur ce sujet a été donné par D. B. 
Zagier au Séminaire Bourbaki en 2007.

Dans ce domaine, la plupart d’études faites ces vingt dernières années sont concentrées sur le côté 
algébrique ou modulaire. Pourtant nous pouvons interpréter certaines d’entre elles au moyen des séries 
dites d’Appell-Lerch, ces dernières étant solutions d’une famille d’équations aux q-différences ayant une 
singularité non-fuchsienne à l’origine.

L’objectif de cette thèse est d’étudier les fonctions mock-thêta d’ordre 3 de Ramanujan à travers la théorie 
analytique des équations aux q-différences. En particulier, nous chercherons à déterminer si ces fonctions 
possèdent un comportement analogue à celui des fonctions thêta classiques au voisinage de chaque racine 
de l’unité. 
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