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Descriptif : Le mouvement brownien fractionnaire (mbf) {𝐵!(𝑡)}"∈ℝ est l’un des processus gaussiens les plus 
connus ; il s’agit en fait d’une extension tout à fait naturelle du mouvement brownien qui, contrairement à ce 
dernier, possède des accroissements corrélés entre eux. Le mbf a été abondamment étudié, non seulement à 
cause de son grand intérêt d’un point de vue théorique mais aussi parce qu’il est très utile dans de nombreuses 
applications liées entre autres au traitement du signal. Il dépend du seul paramètre 𝐻 ∈ ]0,1[, appelé le paramètre 
de Hurst, et il est défini par l’intégrale stochastique de Wiener-Itô : 𝐵!(𝑡) = ∫ 0(𝑡 − 𝑠)%

!&'/) − (−𝑠)%
!&'/)3%*

&* 𝑑𝐵(𝑠), 
pour tout 𝑡 ∈ ℝ. Il est auto-similaire (invariant en loi par changements d’échelle), ce qui en fait un objet de nature 
fractale. De plus, ses accroissements sont stationnaires (invariant en loi par translations).  
      Il y a quelques années l’article [PT] a introduit le mouvement brownien fractionnaire généralisé (mbfg) {𝑋(𝑡)}"∈ℝ 
qui, quant-à-lui, dépend de deux paramètres, le paramètre de Hurst 𝐻 ∈ ]0,1[ et un autre paramètre 𝛾 ∈ [0,1[. Ce 
processus gaussien est défini par : 𝑋(𝑡) = ∫ 0(𝑡 − 𝑠)%

!&'/)&+/) − (−𝑠)%
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&* 𝑑𝐵(𝑠), pour tout 𝑡 ∈ ℝ . 
Divers résultats concernant le comportement de ses trajectoires ont été obtenus dans les trois articles [IPT1, WX1, 
WX2]. Bien que {𝑋(𝑡)}"∈ℝ soit auto-similaire ses accroissements sont non-stationnaires, ce qui le rend plus flexible 
que le mbf et donc mieux adapté que lui à la modélisation de certains phénomènes par exemple en finance, 
comme le souligne l’article [IPT2]. Cependant le caractère gaussien de {𝑋(𝑡)}"∈ℝ et le fait que ses paramètres 
restent constants au cours du temps constituent de sérieuses restrictions de ce modèle ; d’où l’intérêt de chercher 
à construire et à étudier des processus stochastiques non-gaussiens et/ou multifractionnaires (les paramètres 
constants du mbfg sont remplacés par des fonctions ou même des processus stochastiques) qui l’étendent. 
      Dans le cadre de cette thèse on cherchera à atteindre les cinq objectifs suivants : 
      (1) Étudier le comportement des trajectoires et des propriétés en loi d’une première extension multifractionnaire 
gaussienne du mbfg, désignée par {𝑌(𝑡)}"∈ℝ et obtenue en remplaçant les paramètres 𝐻 et 𝛾 par des fonctions 
déterministes 𝐻(𝑡) et  𝛾(𝑡) dépendant de la variable 𝑡 qui représente le temps et sert d’indice pour le processus. 
Pour ce faire on cherchera entre autres à utiliser des méthodologies qui s’inspirent de celles présentées dans le 
livre [A1] et de celles introduites dans l’article [A2]. 
      (2) Étudier le comportement des trajectoires et des propriétés en loi d’une seconde extension multifractionnaire 
non-gaussienne du mbfg, désignée par {𝑍(𝑡)}"∈ℝ  et obtenue en remplaçant les paramètres 𝐻  et 𝛾  par des 
processus stochastiques {𝐻(𝑠)},∈ℝ  et {𝛾(𝑠)},∈ℝ  adaptés à la filtration du mouvement brownien {𝐵(𝑠)},∈ℝ  qui 
engendre l’intégrale stochastique de Wiener-Itô. Pour ce faire on cherchera entre autres à mettre en œuvre des 
méthodologies qui s’inspirent de celles des deux articles [LMS, AB2]. 
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      (3) Étudier le comportement des trajectoires et des propriétés en loi d’une extension non-gaussienne de lois 
marginales stables à queues lourdes du processus multifractionnaire {𝑌(𝑡)}"∈ℝ, désignée par {𝑆(𝑡)}"∈ℝ et obtenue 
en remplaçant le mouvement brownien {𝐵(𝑠)},∈ℝ, qui engendre l’intégrale stochastique de Wiener-Itô, par un 
processus de Lévy stable. Pour ce faire on cherchera entre autres à utiliser des méthodologies qui s’inspirent de 
celles des trois articles [ST1, ST2, AH1]. 
      (4) Essayer de trouver des méthodes permettant la simulation sur un intervalle compact des trajectoires des 
processus multifractionnaires {𝑌(𝑡)}"∈ℝ, {𝑍(𝑡)}"∈ℝ et {𝑆(𝑡)}"∈ℝ. Pour ce faire on cherchera entre autres à s’inspirer 
des méthodes de simulation, via la base de Haar, introduites dans les deux articles [H, AEH]. 
      (5) Essayer de trouver des estimateurs statistiques pour les paramètres des processus multifractionnaires 
{𝑌(𝑡)}"∈ℝ, {𝑍(𝑡)}"∈ℝ et {𝑆(𝑡)}"∈ℝ, et des lois limites pour ces estimateurs. Pour ce faire on cherchera entre autres 
à s’inspirer de certaines idées des trois articles [AB2, AH1, BS]. 
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