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Descriptif : Le mouvement brownien fractionnaire (mbf) {B,(t)},cx €st 'un des processus gaussiens les plus
connus ; il s’agit en fait d'une extension tout a fait naturelle du mouvement brownien qui, contrairement a ce
dernier, posséde des accroissements corrélés entre eux. Le mbf a été abondamment étudié, non seulement a
cause de son grand intérét d’'un point de vue théorique mais aussi parce qu’il est trés utile dans de nombreuses
applications liées entre autres au traitement du signal. Il dépend du seul paramétre H € ]0,1[, appelé le paramétre
de Hurst, et il est défini par l'intégrale stochastique de Wiener-It6 : By, (t) = fj;o((t — )12 _ (—s)f_l/z) dB(s),
pour tout t € R. Il est auto-similaire (invariant en loi par changements d’échelle), ce qui en fait un objet de nature
fractale. De plus, ses accroissements sont stationnaires (invariant en loi par translations).

Il'y a quelques années l'article [PT] a introduit le mouvement brownien fractionnaire généralisé (mbfg) {X(t)}:cr
qui, quant-a-lui, dépend de deux paramétres, le paramétre de Hurst H € ]0,1[ et un autre paramétre y € [0,1[. Ce
processus gaussien est défini par: X(t) = [*((t —s) V27 — (=) 7H27V/2)|s|7v/2 dB(s), pour tout t € R.
Divers résultats concernant le comportement de ses trajectoires ont été obtenus dans les trois articles [IPT1, WX1,
WX2]. Bien que {X(t)};cr SOit auto-similaire ses accroissements sont non-stationnaires, ce qui le rend plus flexible
que le mbf et donc mieux adapté que lui a la modélisation de certains phénoménes par exemple en finance,
comme le souligne l'article [IPT2]. Cependant le caractére gaussien de {X(t)}.cr €t le fait que ses parametres
restent constants au cours du temps constituent de sérieuses restrictions de ce modéle ; d’ou 'intérét de chercher
a construire et a étudier des processus stochastiques non-gaussiens et/ou multifractionnaires (les parametres
constants du mbfg sont remplacés par des fonctions ou méme des processus stochastiques) qui I'étendent.

Dans le cadre de cette thése on cherchera a atteindre les cinq objectifs suivants :

(1) Etudier le comportement des trajectoires et des propriétés en loi d’'une premiéere extension multifractionnaire
gaussienne du mbfg, désignée par {Y(t)},cr €t obtenue en remplagant les paramétres H et y par des fonctions
déterministes H(t) et y(t) dépendant de la variable t qui représente le temps et sert d’indice pour le processus.
Pour ce faire on cherchera entre autres a utiliser des méthodologies qui s’inspirent de celles présentées dans le
livre [A1] et de celles introduites dans I'article [A2].

(2) Etudier le comportement des trajectoires et des propriétés en loi d’'une seconde extension multifractionnaire
non-gaussienne du mbfg, désignée par {Z(t)},cgr et obtenue en remplagant les paramétres H et y par des
processus stochastiques {H(s)}.cr €t {y(s)};cr @daptés a la filtration du mouvement brownien {B(s)}scg Qui
engendre l'intégrale stochastique de Wiener-It6. Pour ce faire on cherchera entre autres a mettre en ceuvre des
méthodologies qui s’inspirent de celles des deux articles [LMS, AB2].
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(3) Etudier le comportement des trajectoires et des propriétés en loi d’une extension non-gaussienne de lois
marginales stables a queues lourdes du processus multifractionnaire {Y (¢)};cg, désignée par {S(t)};cr €t obtenue
en remplagant le mouvement brownien {B(s)}.cr, qui engendre l'intégrale stochastique de Wiener-Itd, par un
processus de Lévy stable. Pour ce faire on cherchera entre autres a utiliser des méthodologies qui s’inspirent de
celles des trois articles [ST1, ST2, AH1].

(4) Essayer de trouver des méthodes permettant la simulation sur un intervalle compact des trajectoires des
processus multifractionnaires {Y (t)};cr, {Z(t)}er €t {S(t) }icr- Pour ce faire on cherchera entre autres a s’inspirer
des méthodes de simulation, via la base de Haar, introduites dans les deux articles [H, AEH].

(5) Essayer de trouver des estimateurs statistiques pour les paramétres des processus multifractionnaires
{Y(O} ters (Z(®)}ier et {S()}ier, et des lois limites pour ces estimateurs. Pour ce faire on cherchera entre autres
a s’inspirer de certaines idées des trois articles [AB2, AH1, BS].
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